On the performance of B4MSA on SENTIPOLC'16

نویسندگان

  • Daniela Moctezuma
  • Eric Sadit Tellez
  • Mario Graff
  • Sabino Miranda-Jiménez
چکیده

This document describes the participation of the INGEOTEC team in SENTIPOLC 2016 contest. In this participation two approaches are presented, B4MSA and B4MSA + EvoDAG, tested in Task 1: Subjectivity classification and Task 2: Polarity classification. In case of polarity classification, one constrained and unconstrained runs were conducted. In subjectivity classification only a constrained run was done. In our methodology we explored a set of techniques as lemmatization, stemming, entity removal, character-based q-grams, word-based n-grams, among others, to prepare different text representations, in this case, applied to the Italian language. The results show the official competition measures and other well-known performance measures such as macro and micro F1 scores. Italiano. Questo documento descrive la partecipazione del team INGEOTEC alla competizione SENTIPOLC 2016. In questo contributo sono presentati due approcci, B4MSA e B4MSA + EvoDAG, applicati al Task 1: Subjectivity classification e Task 2: Polarity classification. Nel caso della classificazione della polarit, sono stati sottomessi un run constrained ed un run unconstrained. Per la classificazione della soggettivita, stato sottomesso solo un run constrained. La nostra metodologia esplora un insieme di tecniche come lemmatizzazione, stemming, rimozione di entit, q-grammi di caratteri, n-grammi di parole, ed altri, al fine di ottenere diverse rappresentazioni del testo. In questo caso essa applicata alla lingua italiana. I risultati qui presentati sono due: le metriche della competizione ufficiale ed altre misure note della performance, come macro F1 e micro F1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INGEOTEC at SemEval 2017 Task 4: A B4MSA Ensemble based on Genetic Programming for Twitter Sentiment Analysis

This paper describes the system used in SemEval-2017 Task 4 (Subtask A): Message Polarity Classification for both English and Arabic languages. Our proposed system is an ensemble of two layers, the first one uses our generic framework for multilingual polarity classification (B4MSA) and the second layer combines all the decision function values predicted by B4MSA systems using a nonlinear funct...

متن کامل

Tweet2Check evaluation at Evalita Sentipolc 2016

English. In this paper we present our Tweet2Check tool, provide an analysis of the experimental results obtained by our tool at the Evalita Sentipolc 2016 evaluation, and compare its performance with the state-of-the-art tools that participated to the evaluation. In the experimental analysis, we show that Tweet2Check is: (i) the second classified for the irony task, at a distance of just 0.0068...

متن کامل

Overview of the Evalita 2016 SENTIment POLarity Classification Task

English. The SENTIment POLarity Classification Task 2016 (SENTIPOLC), is a rerun of the shared task on sentiment classification at the message level on Italian tweets proposed for the first time in 2014 for the Evalita evaluation campaign. It includes three subtasks: subjectivity classification, polarity classification, and irony detection. In 2016 SENTIPOLC has been again the most participated...

متن کامل

IRADABE2: Lexicon Merging and Positional Features for Sentiment Analysis in Italian

English. This paper presents the participation of the IRADABE team to the SENTIPOLC 2016 task. This year we investigated the use of positional features together with the fusion of sentiment analysis resources with the aim to classify Italian tweets according to subjectivity, polarity and irony. Our approach uses as starting point our participation in the SENTIPOLC 2014 edition. For classificati...

متن کامل

Lacam&Int@UNIBA at the EVALITA 2016-SENTIPOLC Task

English. This paper describes our first experience of participation at the EVALITA challenge. We participated only to the SENTIPOLC Sentiment Polarity subtask and, to this purpose we tested two systems, both developed for a generic Text Categorization task, in the context of the sentiment analysis: SentimentWS and SentiPy. Both were developed according to the same pipeline, but using different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016